PhD Preliminary Examination in Analysis Department of Mathematics New Mexico Tech

Syllabus

The PhD Preliminary Examination in Analysis is intended to determine whether a student has adequate knowledge in the general area of real and complex analysis to begin a research program in applied mathematics. The exam 6. Sequences and Series of Functions. Pointwise convergence, uniform convergence, Cauchy condition for 7. J. W. Brown and R. V. Churchill, *Complex Variables and Applications*, McGraw-Hill, 2003

Note: Many previous editions of these books available on the market will su $% \left({{{\mathbf{r}}_{\mathbf{r}}}_{\mathbf{r}}} \right)$ ce as well.

PhD Preliminary Examination in Analysis Department of Mathematics New Mexico Tech

Practice Exam

Real Analysis

1. (a) Let I = [0, 1] and f, g: I ! R

11. Let $(a_n)_{n \ge N}$ be a real-valued sequence such that

$$a_1 \quad 0; \quad a_2 \quad 0; \quad \text{and} \quad a_{n+2} = (a_n a_{n+1})^{1+2} \quad \text{for } n \ge N$$

- (a) Show that (a_n) is convergent.
- (b) Show that $\lim_{n \neq 1} a_n = (a_1 a_2^2)^{1=3}$.
- 12. Let $\Pr_{n=1}^{7} a_n$ be a convergent series and the series $\Pr_{n=1}^{7} b_n$ is such that the series $\Pr_{n=1}^{7} a_n b_n$ converges absolutely. Prove that the series $\Pr_{n=1}^{7} a_n b_n$ converges.
- 13. Let A; B R be disjoint sets of real numbers, that is, $A \setminus B = f$. Show that: i) If A is compact and B is closed, then there exists > 0 such that ja bj > for any a 2 A and for any b 2 B; ii) If A is closed and B is closed, then the above assertion is false.
- 14. Let A = R be a closed set of real numbers. Prove that there is a continuous function f : R ! = R such that the set of its zero points F = fx 2 R j f(x) = 0g is precisely A, that is F = A.
- 15. Let f:[0; 7) ! R be a function such that: i) f is continuous on [0; 7), ii) f is di erentiable on (0; 7), iii) f(0) = 0, iv) $jf^{0}(x)j = jf(x)j$ for all x > 0. Prove that f(x) = 0 for all $x \ge [0; 7)$.
- 16. Let *I* be an open interval and $f : I \neq \mathbb{R}$ be a function di erentiable on *I*. Prove that f^{\emptyset} is continuous if and only if the inverse image under f^{\emptyset} of any point is a closed set.
- 17. Let I = [0, 1], E I be a countable subset of I, and f : I ! R be bounded on I and continuous on I n E. Prove that f is Riemann integrable on I.
- 18. Let I = [1;1] and f : I / R be a function defined by

$$f(x) = \begin{cases} 8 \\ < x \sin \frac{1}{x} ; x \neq 0; \\ 0 & x = 0; \end{cases}$$

Determine whether f is Riemann integrable on I.

19. Let I = [0; 1] and f : I / R be a continuous function on I such that

$$\int_{0}^{1} f(t)p(t) dt = 0$$

for any polynomial *p*. Prove that f(x) = 0 for any $x \ge 1$.

20. Let $f : \mathbb{R}$ / \mathbb{R} be a continuous function, 2 \mathbb{R} , and let A, B and C be the sets defined by $A = fx 2 \mathbb{R} j f(x) = g$, $B = fx 2 \mathbb{R} j f(x) = g$, and $A = fx 2 \mathbb{R} j f(x) < g$. Show that the set3a694 -283i243 6.9738 cTJ/F14 9.9626 Tf 6.642 0 Td237 Ts0

- 21. Let $f : \mathbb{R} / \mathbb{R}$. Prove that f is continuous if and only if the inverse image of any closed set is closed.
- 22. Prove that the intersection of an arbitrary collection of compact sets in ${\sf R}$ is compact.

Complex Analysis

1. Let ! : C n f 0 g ! C be a function defined by

$$W(Z) = Z + \frac{1}{Z}$$

Let S be a set in the complex plane de ned by

$$S = Z : \frac{1}{2} < jzj < 2$$

Find and sketch the image !(S) of the set S under the map !.

2. Show that all ve roots of the complex polynomial

$$P(z) = z^5 + 6z^3 + 2z + 10$$

lie in the annulus 1 < jzj < 3.

3. Let C

- 8. Let f and g be entire functions with no zeros and having the ratio f=g equal to unity at in nity. Show that they are the same function. That is, if f and g are entire functions such that $f(z) \neq 0$ and $g(z) \neq 0$ for any z and $\lim_{z \neq -1} f=g = 1$, then f = g.
- 9. Let *f* be a complex function that is analytic and nonzero in a region *D* in a complex plane. Show that *jfj* has a minimum value in *D* that occurs on the boundary of *D*.
- 10. Let $f : \mathbb{R} / \mathbb{R}$ be a function such that $jf(t)j = e^{-ajtj}$ for any $t \ge \mathbb{R}$, with some constant a > 0. Define a complex function F by

$$F(z) = \int_{1}^{L} f(t)e^{izt}dt:$$

Find 26 Tf 8.5.9626 Tf dt :