Probability and Statistics, Sample Prelim III Questions, Fall 2021

1. For the Normal random variable with density

$$f(x_{i}) = -\frac{1}{\sqrt{2}}e^{\frac{(x_{i})^{2}}{2}}$$

consider estimating the parameter $= (;)^{\ell}$.

- (a) Find the Fisher information matrix for
- (b) Using the multivariate Delta-method, nd the approximate distribution for =

5. A single observation X is taken from a population with density function

 $f(x_{i}) = e^{-x_{i}}$ for x > 0 and > 0:

- (a) For c > 0 consider the test that rejects $H_0 := {}_0$ in favor of $H_1 := {}_0$ when X > c. Determine c so that this is a size test where $0 < {}_< < 1$.
- (b) Invert the test in (a) to obtain a 1 size con dence set for .
- 6. For a Markov Chain representing a random walk on the non-negative integers,

(

$$X_{n+1} = X_n + 1$$
; with probability p
 $X_{n+1} = X_n - 1$; with probability $q = 1 - p$

unless $X_n = 0$, in which case

(

$$X_{n+1} = 1$$
; with probability p
 $X_{n+1} = 0$; with probability $q = 1 p$

- (a) Give the conditions (with proof) under which the stationary distribution exists, then calculate the stationary distribution.
- (b) Calculate the expected time, starting from 0, to reach the state 3.
- **7.** For the Poisson process with the rate \therefore Let W_k be the time when *k*th event occurs.
 - (a) Find the correlation coe cient between W_3 and W_4 .
 - (b) Find the correlation coe cient between W_3 and W_4 , under the condition that $W_5 = 10$
- 8. The customers are coming to the system according to the Poisson process with the rate \therefore Each customer is immediately being served, with the service time being Exponential with the rate parameter \therefore Let X(t) be the total number of customers in the system at the tie t (currently being served).
 - (a) Model X(t) as a birth-and-death process (specify the birth and death rates).
 - (b) Find the stationary distribution for X(t), specify the conditions under which it exists.